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Coordination Control for Haptic and Teleoperator Systems∗

E. Tatlicioglu, M. McIntyre, D. Dawson, and T. Burg�

Abstract: In this paper, two controllers are developed
for nonlinear haptic and teleoperator systems for coordi-
nation of the master and slave systems. The Þrst con-
troller is proven to yield a semi-global asymptotic result
in the presence of parametric uncertainty in the master
and the slave dynamic models provided the user and the
environmental input forces are measurable. The second
controller yields a global asymptotic result despite un-
measurable user and environmental input forces provided
the dynamic models of the master and slave are known.
These controllers rely on a transformation and a ßexible
target system to allow the master system�s impedance
to be easily adjusted so that it matches a desired target
system. This work also offers a structure to encode a ve-
locity Þeld assist mechanism to provide the user help in
controlling the slave system in completing a pre-deÞned
contour following task. For each controller, Lyapunov-
based techniques are used to prove that both controllers
provide passive coordination of the haptic/teleoperator
system when the velocity Þeld assist mechanism is dis-
abled. When the velocity Þeld assist mechanism is en-
abled, the analysis proves the coordination of the hap-
tic/teleoperator system. Simulation results are presented
for both controllers.

1 Introduction

For the purposes of this research, the following deÞnitions
are made. A teleoperator system enables a user to execute
a remote task with an output system (i.e., a slave system)
operating in a physical environment by manipulating an
input system (i.e., a joystick or a master system) while
providing feedback on the input system. A haptic system
is similar to a teleoperator system with the exception that
the slave system operates in a virtual environment. Some
common application areas for teleoperator and haptic sys-
tems include handling hazardous materials, maneuvering
mobile robots, underwater vehicles, and microsurgery in
either a physical or a virtual environment. The opera-
tor�s ability to accurately complete these tasks is affected
by the transparency of the teleoperator or haptic sys-
tem. Tactile and force feedback from the system con-
troller along with assistive mechanisms greatly increase

∗This work is supported in part by two DOC Grants, an ARO
Automotive Center Grant, a DOE Contract, a Honda Corporation
Grant, and a DARPA Contract.

�The authors are with the Department of Electrical & Computer
Engineering, Clemson University, Clemson, SC 29634-0915. E-mail:
etatlic@clemson.edu

the user�s performance in completing the desired task [8].
Tactile and force feedback provides the user of the sys-
tem with a sense of feel or sense of telepresence [32] of
what the slave system is experiencing in either a physi-
cal or a virtual environment. Assistive mechanisms can
be integrated into the system controller in various ways.
One example, which will be discussed further in subse-
quent sections of this paper, is the encoding of a tracking
objective in the master system that assists the user in
completing a pre-deÞned task (i.e., consider a teleopera-
tor grinding application where the remote user controls
the slave system to track a repeated circular path to com-
plete the desired task).
Both the teleoperator and/or haptic problem are theo-

retically challenging due to issues that impact the user�s
ability to impart a desired motion on the remote envi-
ronment while maintaining a sense of feel through the
system controller. This problem is further complicated
due to the fact that master system apparent inertia is
normally very different than that of the slave system that
is operating in the remote environment, be it physical or
virtual. If the apparent inertia of the master system could
be adjusted by the system controller to appear like that
of the slave systems, the operator�s sense of telepresence
would be achieved, hence, increasing the user�s ability to
operate the slave system. To address the above control
objective, commercially available haptic systems come in
two distinct classes: impedance controlled devices, and
admittance controlled devices [35]. Both classes have ad-
vantages/disadvantages depending on the application, see
[8] and [35] for more details.
The focus of some of the previous teleoperator system

research has been to achieve ideal transparency between
the environment and the user. In [10], Hannaford mod-
eled the teleoperator system as a two-port network where
an estimate of the impedance of the slave system is re-
quired to achieve transparency. In [6], a priori knowledge
of the environmental inputs to the slave system is required
to achieve the transparency control objective. Controllers
aiming at low-frequency transparency were suggested in
[9], [14], and [31]. Frequency-based control designs given
in [6], [9], [10], [14], and [31] are for linear teleoperator sys-
tems. The concept of the four-channel architecture, which
assumes knowledge of system impedances was introduced
by the authors of [14] and [37]. To overcome parametric
uncertainties, common in teleoperator systems, adaptive
controllers were developed in [5], [12], [22], [29], [33], and
[38].
Other research has focused on maintaining safe and sta-
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ble operation of the teleoperator system through passiv-
ity concepts. In [1], Anderson and Spong transformed
the time delay problem of the teleoperator system into a
transmission line problem and presented a controller for
the communication circuit that guarantees passivity of
the teleoperator system independent of time delay present
in the communication block. In [26], Niemeyer and Slo-
tine extended the results in [1], and introduced wave-
variables formulation to represent transmission delays,
which results in a new conÞguration for force-reßecting
teleoperation. These results were then extended to solve
the position tracking problem where [4] and [27] provided
a solution when the time delay is constant and [3] pro-
vided a solution when the time delay is time-varying. In
[17], a passive decomposition for linear dynamically sim-
ilar systems is introduced. In [15], Lee and Li extended
these results to deÞne a nonlinear decomposition which
achieves passivity of the master and the slave robots by
decomposing the closed-loop teleoperator system into two
sub-systems. The reader is referred to [16], [18], and [19]
for improvements of passive decomposition. In [20] and
[21], Lee suggested a controller for a master and multiple
cooperative slave robots over a communication network in
the presence of a time delay. In [11], Hannaford and Ryu
proposed a passivity based model-insensitive approach
that measures the total energy of the system and damps
excess energy by injecting a variable damping, which was
then extended in [30].

In this paper, the work in [25] is extended so that it is
applicable for the control of both teleoperator and hap-
tic systems. Two controllers are developed for nonlin-
ear haptic and teleoperator systems that target coordi-
nation of the master and slave. The Þrst controller is
proven to yield a semi-global asymptotic result in the
presence of parametric uncertainty in the master and
slave dynamic models provided the user and environmen-
tal input forces are measurable; henceforth, referred to
as the MIF, (measurable input force) controller. The
second controller yields a global asymptotic result de-
spite unmeasurable user and environmental input forces
(UMIF) provided the dynamic models of the master and
slave systems are known. This paper differs from [25],
in that the transformation and target system develop-
ment are both modiÞed to allow the master system�s im-
pedance, felt by the user, to be adjusted so that it closely
matches that of a desired target system operating in a re-
mote environment. This work also provides the encoding
of a velocity Þeld assist mechanism to provide the user
help in controlling the slave system in completing a pre-
deÞned contour following task. To achieve these control
objectives, a continuous nonlinear integral feedback con-
troller/observer (see [28] and [36]) is exploited to compen-
sate for the lack of master and slave dynamics informa-
tion or user and environmental force measurements. For
each controller, Lyapunov-based techniques are used to
prove that the controller development implements a sta-
ble coordinated haptic/teleoperator system with the op-

tional assist mechanism enabled. When this mechanism
is disabled, the subsequent analysis proves the controller
development implements a stable passively coordinated
haptic/teleoperator system. The passivity objective is
motivated to ensure the safety of the user and the en-
vironment when in contact with the haptic/teleoperator
system. Simulation results are presented for proof of con-
cept for both controllers.

2 System Model

The mathematical model for a 2n-DOF nonlinear hap-
tic/teleoperator system consisting of a revolute n-DOF
master and a revolute n-DOF slave system are assumed
to have the following forms

M1 (xm) ẍm +N1 (xm, úxm) = T1 + FH (1)

M2 (xs) ẍs +N2 (xs, úxs) = T2 + FE. (2)

In (1) and (2), xm (t), úxm (t), ẍm (t) ∈ Rn denote the
task-space position, velocity, and acceleration for the
master system and xs (t), úxs (t), ẍs (t) denote the task-
space position, velocity, and acceleration for the slave sys-
tem, M1 (xm), M2 (xs) ∈ Rn×n represent the inertia ef-
fects, N1 (xm, úxm), N2 (xs, úxs) ∈ Rn represent other dy-
namic effects, T1 (t), T2 (t) ∈ Rn represent the control in-
put vectors, FH (t) ∈ Rn represents the user input force,
and FE (t) ∈ Rn represents the input force from the phys-
ical or virtual environment. End-effector positions xm (t)
and xs (t) can be decomposed as follows

xm ,
£
xTmp xTmr

¤T
xs ,

£
xTsp xTsr

¤T
where xmp (t) , xsp (t) ∈ Rp represent position vectors and
xmr (t) , xsr (t) ∈ Rr represent orientation angle vectors,
where the integers p and r satisfy p + r = n. The subse-
quent development utilizes the property that the master
and slave inertia matrices are positive deÞnite, symmetric
and satisÞes the following inequalities [23]

m1i kξk2 ≤ ξTMi (·) ξ ≤ m2i kξk2 (3)

∀ξ ∈ Rn and i = 1, 2 wherem1i,m2i ∈ R are positive con-
stants, and k·k denotes the Euclidean norm. To achieve
the control objectives, the subsequent development is de-
rived based on the assumption that xm (t), xs (t), úxm (t),
úxs (t) are measurable, and Mi (·), Ni (·) are second order
differentiable for i = 1, 2.

Assumption 1 The user input force and the environ-
mental force along with their Þrst and second time
derivatives, FH (t), úFH (t), F̈H (t), FE (t), úFE (t), and
F̈E (t) are bounded (see [15] and [17] for the prece-
dence of this type of assumption).

3 MIF Control Development

For the MIF controller development, the following analy-
sis will prove a semi-global asymptotic result despite para-
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metric uncertainty in the master and slave system dy-
namic models provided the user and the physical or vir-
tual environmental input forces are measurable. It should
be noted that for many types of virtual slave systems,
the dynamic model of the virtual slave is known a pri-
ori ; however; unstructured uncertainties in the dynamic
model are common for teleoperator slave systems.

3.1 Control Objective and Model Trans-
formation

A control objective for haptic and teleoperator systems
is to ensure the coordination between the master and the
slave systems and to meet the tracking objective in the
following sense

xs (t) → xm (t) as t→∞ (4)

xm (t) → ξd (t) as t→∞ (5)

where ξd (t) ∈ Rn is a subsequently designed desired tra-
jectory. Another sub-control objective is to guarantee
that the closed-loop system remains passive with respect
to the user and the physical/virtual environmental power
in the following sense [15]Z t

t0

¡
úxTm (τ)FH (τ) + úxTs (τ)FE (τ)

¢
dτ ≥ −c21 (6)

where c1 ∈ R is a bounding constant. The passivity objec-
tive is motivated to ensure the safety of the user and the
physical environment [15]. The Þnal objective is that all
signals are required to remain bounded within the closed-
loop system. It should be noted that, the passivity ob-
jective is not met when the subsequently presented user
assist mechanism is enabled.
To facilitate the subsequent development, an invertible

transformation is deÞned that encodes the control objec-
tives as follows

x , S
£
xTm xTs

¤T
(7)

where x (t) ∈ R2n and S ∈ R2n×2n is deÞned as follows

S ,
·
In 0nxn
In −In

¸
(8)

where In ∈ Rn×n denotes the identity matrix, 0nxn ∈
Rn×n denotes a matrix of zeros, and it is noted that
S−1 = S. After utilizing the transformation deÞned in
(7), the dynamic models of the haptic/teleoperator sys-
tems given in (1) and (2) can be combined as follows

M̄ẍ+ N̄ = T̄ + F̄ (9)

where N̄ (x, úx), T̄ (t), F̄ (t) ∈ R2n and M̄ (x) ∈ R2n×2n
are deÞned as follows

M̄ , S−T
·
M1 0nxn
0nxn M2

¸
S−1 (10)

N̄ , S−T
£
NT
1 NT

2

¤T
(11)

T̄ , S−T
£
TT1 TT2

¤T
(12)

F̄ , S−T
£
FTH FTE

¤T
. (13)

The subsequent development utilizes the property that
M̄ (x) is positive deÞnite, symmetric and satisÞes the fol-
lowing inequalities [23]

m̄1 kξk2 ≤ ξT M̄ (x) ξ ≤ m̄2 kξk2 (14)

∀ξ ∈ R2n where m̄1, m̄2 ∈ R are positive constants. By
utilizing the assumption that Mi (·), Ni (·) are second or-
der differentiable for i = 1, 2, it is clear that M̄ (·) and
N̄ (·) are also second order differentiable.
To facilitate the development of the error system, the

Þltered tracking error signal, denoted by r (t) ∈ R2n, is
deÞned as follows

r , úe2 + α1e2 (15)

where e2 (t) ∈ R2n is deÞned as follows
e2 , úe1 + α2e1 (16)

where α1, α2 ∈ R are positive control gains, and e1 (t) ∈
R2n is deÞned as follows

e1 , xd − x. (17)

The error signal e1 (t) can be decomposed as follows

e1 ,
£
eT11 eT12

¤T
(18)

where e11 (t) ∈ Rn represents the master system tracking
error, and e12 (t) ∈ Rn represents the coordination error.
In (17), xd (t) ∈ R2n is deÞned as follows

xd ,
£
ξTd 0Tn

¤T
(19)

where 0n ∈ Rn denotes a vector of zeros. Based on the
deÞnition of x (t) in (7) and e1 (t) in (17), it is clear that
if ke1 (t)k→ 0 then xs (t)→ xm (t) and xm (t)→ ξd (t) .
The desired trajectory ξd (t) introduced in (5) is gener-

ated by the following second-order coupled dynamic tar-
get system

úξd = γ
£
ϕT
¡
ξp
¢
0Tr

¤T
+ ηd (20)

MT úηd +BTηd +KTλd = F (21)

where ηd (t) ∈ Rn is an auxiliary Þlter signal, MT , BT ,
KT ∈ Rn×n are constant positive deÞnite, diagonal matri-
ces, ϕ (·) ∈ Rp is a velocity Þeld function [24] that encodes
the user assist mechanism, 0r ∈ Rr denotes a vector of
zeros, γ is a constant gain that is either 0 or 1. It should
be noted that, when γ = 0, the user assist mechanism is
disabled, and when γ = 1, then the user assist mechanism
is enabled. In (21), F (t) ∈ Rn is deÞned as follows

F , FH + FE. (22)

Also, in (21) the term λd (t) ∈ Rn is deÞned as follows

λd , ξd − γ
·

tR
t0

ϕT
¡
ξp (τ)

¢
dτ 0Tr

¸T
(23)
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where ξd (t) is generated by the differential equation of
(20), and can be decomposed as follows

ξd ,
£
ξTp ξTr

¤T
(24)

where ξp (t) ∈ Rp represents a position vector, and
ξr (t) ∈ Rr represents an orientation angle vector.

Remark 1 Velocity Þelds have been utilized in previous
control literature, see [2] and [24] for their deÞnition and
application. The velocity Þeld function in (20) is inte-
grated to assist the user in executing a remote task (i.e.,
tracking a circular contour). It is assumed that the ve-
locity Þeld function is designed such that ϕ (·), úϕ (·), ϕ̈ (·)
and ...ϕ (·) are bounded provided that their arguments are
bounded.

Remark 2 The velocity Þeld function ϕ (·) is assumed
to be designed such that, from (20), if ηd (t) ∈ L∞ then
ξd (t), úξd (t) ∈ L∞. Based on this assumption and the
analysis in Appendix A, it is easy to show that all sig-
nals in dynamic target system given in (20) and (21) are
bounded, and that the higher order derivatives are also
bounded.

Remark 3 It should be noted that, when the user assist
mechanism is disabled, (i.e., γ = 0) the target system
deÞned by (20) and (21), becomes a standard impedance
model as follows

MT ξ̈d +BT úξd +KT ξd = F. (25)

3.2 Closed-Loop Error System

Based on the assumption that the user forces FH (t) ,
and the physical/virtual environmental forces FE (t) , are
measurable, the control input T̄ (t) of (9) is designed as
follows

T̄ , ū− F̄ (26)

where ū (t) ∈ R2n is a subsequently designed auxiliary
control input. Substituting (26) into (9) results in the
following simpliÞed dynamic system

M̄ẍ+ N̄ = ū. (27)

After taking the time derivative of (15) and premultiply-
ing by M̄ (x), the following expression can be derived

M̄ úr = M̄
...
xd +

.

M̄
..
x +

.

N̄ − .
ū +α2M̄ë1 + α1M̄ úe2 (28)

where (16), (17), and the time derivative of (27) were uti-
lized. To facilitate the subsequent analysis, the expression
in (28) can be arranged as follows

M̄ úr = �N +Nd − e2−
.
ū −1

2

.

M̄ r (29)

where �N (x, úx, ẍ, t) ∈ R2n is deÞned as follows
�N , N −Nd (30)

where N (x, úx, ẍ, t) ∈ R2n is deÞned as follows

N , M̄
...
xd +

.

M̄ ẍ+ α2M̄ë1 (31)

+α1M̄ úe2 + e2+
.

N̄ +
1

2

.

M̄ r

and Nd (t) ∈ R2n is deÞned as follows

Nd , N |x=xd, úx= úxd, ẍ=ẍd (32)

= M̄ (xd)
...
xd +

.

M̄ (xd, úxd) ẍd+
.

N̄ (xd, úxd, ẍd) .

Remark 4 After utilizing (19), (32) and the fact that we
show in Appendix A, then kNd (t)k and

°°° úNd (t)°°° can be
upper bounded as follows

kNd (t)k ≤ ς1
°°° úNd (t)°°° ≤ ς2 (33)

where ς1, ς2 ∈ R are known positive constants.

To achieve the stated control objectives, the auxiliary
control input ū (t) introduced in (26) is designed as follows

ū , (ks + 1)

·
e2 (t)− e2 (t0) + α1

Z t

t0

e2 (τ) dτ

¸
+(β1 + β2)

Z t

t0

sgn (e2 (τ)) dτ (34)

where ks, β1, β2 ∈ R are positive control gains, and
sgn (·) denotes the vector signum function. The term
e2 (t0) in (34) is used to ensure that ū (t0) = 02n where
02n ∈ R2n denotes a vector of zeros. The time derivative
of (34) is obtained as follows

.
ū= (ks + 1) r + (β1 + β2) sgn (e2) (35)

where (15) was utilized. Substituting (35) into (29) re-
sults in the following closed-loop error system

M̄ úr = − (ks + 1) r − (β1 + β2) sgn (e2) (36)

+ �N +Nd − e2 − 1
2

.

M̄ r.

3.3 Stability Analysis

Theorem 1 The controller given in (26) and (34) guar-
antees that all the system signals are bounded under the
closed-loop operation and that coordination between the
master and the slave systems, and the tracking objective
are met in the sense that

xs (t) → xm (t) as t→∞ (37)

xm (t) → ξd (t) as t→∞ (38)
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provided the control gain β1 introduced in (34) is selected
to satisfy the following sufficient condition

β1 > ς1 +
1

α1
ς2 (39)

where ς1 and ς2 were introduced in (33), the control gains
α1 and α2 are selected greater than 2, and ks is selected
sufficiently large relative to the system�s initial conditions.

Proof. See Appendix B.

Theorem 2 The controller given in (26) and (34) guar-
antees the closed-loop system is passive with respect to the
user and the physical/virtual environmental power when
the user assist mechanism is disabled (i.e., γ = 0).

Proof. See Appendix C.

4 UMIF Control Development

For the UMIF controller development, the following
analysis will prove a global asymptotic result despite un-
measurable user and environmental input forces provided
the dynamic models of the master and slave systems are
known. Assumption 1 is also utilized for the subsequent
development. It should be noted that, for many types
of virtual slave systems, the virtual environmental forces
are measurable; however, the user input force may not be
measurable.

4.1 Control Objective and Model Trans-
formation

A control objective for haptic and teleoperator systems
is to guarantee coordination between the master and the
slave systems and to meet the tracking objective in the
following sense

xs (t) → xm (t) as t→∞ (40)

xm (t) → ξ1 (t) as t→∞ (41)

where ξ1 (t) ∈ Rn is a subsequently designed desired tra-
jectory. Another sub-control objective is to guarantee
that the system remains passive with respect to the user
and the environmental power as in (6). It should be noted
that the passivity objective is not met when the user as-
sist mechanism is enabled. The Þnal objective is that all
signals are required to remain bounded within the closed-
loop system.
To facilitate the subsequent development, an invertible

transformation is deÞned that encodes the control objec-
tives as follows

x , S
·
xm
xs

¸
+

·
0n
ξ2

¸
(42)

where x (t) ∈ R2n and ξ2 (t) ∈ Rn is a subsequently de-
Þned desired trajectory, and S ∈ R2n×2n was deÞned in

(8). After utilizing the transformation deÞned in (42), the
dynamic models of the haptic/teleoperator system given
in (1) and (2) can be combined as follows

M̄ẍ− M̄
·
0n
ξ̈2

¸
+ N̄ = T̄ + F̄ (43)

where M̄ (x), N̄(x, úx), T̄ (t), and F̄ (t) were deÞned in
(10)-(13).
The Þltered tracking error signal denoted by r (t) ∈ R2n

is deÞned as follows

r , úe2 + e2 (44)

where e2 (t) ∈ R2n is deÞned as follows
e2 , M̄ ( úe1 + αe1) (45)

where α ∈ R is a positive control gain, and e1 (t) ∈ R2n
is deÞned as follows

e1 , ξd − x (46)

where ξd (t) is a subsequently deÞned desired trajectory.
The error signal e1 (t) can be decomposed as follows

e1 ,
£
eT11 eT12

¤T
(47)

where e11 (t) ∈ Rn represents the master system tracking
error, and e12 (t) ∈ Rn represents the coordination error.
To compensate for the unmeasurable user and phys-

ical/virtual environmental forces, a nonlinear force ob-
server is designed subsequently. This nonlinear observer
is utilized in driving the target system, thus requiring a
2n-dimensional system. As a result of this fact, the de-
sired trajectory, deÞned as ξd (t) ∈ R2n, is generated by
the following second order coupled dynamic target sys-
tem1

úξd = γ
£
ϕT
¡
ξ1p
¢
0Ts

¤T
+ ηd (48)

MT úηd +BTηd +KTλd =
¡
M̄M−1

T

¢−1 �F (49)

where ηd (t) ∈ R2n is an auxiliary Þlter signal, M̄ (x) was
deÞned in (10), MT , BT and KT ∈ R2n×2n represent
constant, positive deÞnite, diagonal matrices, �F (t) ∈ R2n
is a subsequently designed nonlinear observer, ϕ (·) ∈ Rp
was introduced in Section 3.1, 0s ∈ Rs denotes a vector
of zeros where s + p = 2n, and γ is a constant gain that
is either 0 or 1. It should be noted that, when γ = 0, the
user assist mechanism is disabled, and when γ = 1, then
the user assist mechanism is enabled. In (49), the term
λd (t) ∈ R2n is deÞned as follows

λd , ξd − γ
·

tR
t0

ϕT
¡
ξ1p (τ)

¢
dτ 0Ts

¸T
(50)

1For the existence of
³
M̄M−1

T

´−1
see Appendix G.
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where ξd (t) ,
£
ξT1 ξT2

¤T
is generated by the differ-

ential equation given in (48) where ξ1 (t) , ξ2 (t) ∈ Rn.
The desired trajectory for the master system denoted by
ξ1 (t), can be decomposed as follows

ξ1 ,
£
ξT1p ξT1r

¤T
(51)

where ξ1p (t) ∈ Rp represents a position vector, and
ξ1r (t) ∈ Rr represents an orientation angle vector.
Remark 5 The velocity Þeld function ϕ (·) is assumed
to be designed such that, from (48), if ηd (t) ∈ L∞ then
ξd (t), úξd (t) ∈ L∞. Subsequent analysis will prove that
�F (t) ∈ L∞. After utilizing these facts along with (14), the
analysis in Appendix F proves that all signals in the dy-
namic target system given in (48) and (49) are bounded.

Remark 6 Although the desired trajectory dynamics de-
Þned in (48) and (49) generated a 2n-dimensional sig-
nal, it should be noted that the master system tracks an
n-dimensional signal, denoted as ξ1 (t). The use of a 2n-
dimensional desired trajectory generator is a consequence
of the fact that both the user input force and the phys-
ical/virtual environmental force are unmeasurable, and
hence, a 2n-dimensional nonlinear force observer must
be utilized to drive the target system as deÞned in (49).
From the deÞnition of the transformation and the error
signal e1 (t) (see (42) and (46)), it is clear that additional
set of desired trajectory dynamics, denoted by ξ2 (t), are
eliminated in the error system development.

Remark 7 It should be noted that, when the user assist
mechanism is disabled (i.e., γ = 0), then the target system
deÞned by (48) and (49), becomes an impedance model
described as follows

MT ξ̈d +BT úξd +KT ξd =
¡
M̄M−1

T

¢−1 �F. (52)

4.2 Closed-Loop Error System

To develop the closed-loop error system for r (t) , error
system dynamics for e1 (t) and e2 (t) are derived Þrst. Af-
ter taking the second time derivative of (46) and premul-
tiplying by M̄ (x), the following expression can be derived

M̄ë1 = �F − ¡M̄M−1
T

¢
(BTηd +KTλd) (53)

−M̄
·
0n
ξ̈2

¸
+ N̄ − T̄ − F̄

+γM̄
d

dt

³£
ϕT
¡
ξ1p
¢
0Ts

¤T´
where (43), (48) and (49) were utilized. Based on the
assumption of exact model knowledge, the control input
T̄ (t) is designed as follows

T̄ , T̄1 −
¡
M̄M−1

T

¢
(BT ηd +KTλd)− M̄

·
0n
ξ̈2

¸
+N̄ + γM̄

d

dt

³£
ϕT
¡
ξ1p
¢
0Ts

¤T´
(54)

where T̄1(t) ∈ R2n is a subsequently designed auxiliary
control input. Substituting (54) into (53) results in the
following simpliÞed expression

M̄ë1 = �F − F̄ − T̄1. (55)

The time derivative of e2(t) in (45) can be obtained as
follows

úe2 =
.

M̄ úe1 + α
.

M̄ e1 + αM̄ úe1 + �F − F̄ − T̄1 (56)

where (55) was utilized. Based on (56), the auxiliary
control input T̄1(t) is designed as follows

T̄1 ,
.

M̄ úe1 + α
.

M̄ e1 + αM̄ úe1. (57)

After substituting (57) into (56), the following simpliÞed
expression is obtained

úe2 = �F − F̄ . (58)

Taking the time derivative of (58) results in the following
expression

ë2 =
.

�F −
.

F̄ . (59)

The error system dynamics for r (t) can be derived by
taking the time derivative of (44)

úr = r − e2+
.

�F −
.

F̄ (60)

where (44) and (59) were both utilized. To achieve the
stated control objectives, the proportional-integral like
nonlinear observer �F (t) introduced in (49) is designed as
follows

�F , − (ks + 1)
·
e2 (t)− e2 (t0) +

Z t

t0

e2 (τ) dτ

¸
− (β1 + β2)

Z t

t0

sgn (e2 (τ)) dτ (61)

where ks, β1, and β2 ∈ R are positive control gains. The
term e2 (t0) is used to ensure that �F (t0) = 02n. The time
derivative of (61) is obtained as follows

.

�F= − (ks + 1) r − (β1 + β2) sgn (e2) (62)

where (44) was utilized. Substituting (62) into (60) re-
sults in the following closed-loop error system

úr = −e2−
.

F̄ −ksr − (β1 + β2) sgn (e2) . (63)

Remark 8 After utilizing (13) and Assumption 1, then°°° .F̄ (t)°°° and °°° ..F̄ (t)°°° can be upper bounded as follows°°° .F̄ (t)°°° ≤ ς3 °°° ..F̄ (t)°°° ≤ ς4 (64)

where ς3, ς4 ∈ R denote positive bounding constants.
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4.3 Stability Analysis

Theorem 3 The controller given in (54) and (57) guar-
antees that all signals are bounded under closed-loop op-
eration and that coordination between the master and the
slave systems, and the tracking objective are met in the
sense that

xs (t) → xm (t) as t→∞ (65)

xm (t) → ξ1 (t) as t→∞ (66)

provided the control gain β1, introduced in (61) is selected
to satisfy the sufficient condition

β1 > ς3 + ς4, (67)

where ς3 and ς4 were introduced in (64).

Proof. See Appendix D.

Theorem 4 The controller given in (54) and (57) guar-
antees that the haptic/teleoperator system is passive with
respect to the user and the physical/virtual environmen-
tal power when the user assist mechanism is disabled (i.e.,
γ = 0).

Proof. See Appendix E.

5 Conclusions

Two controllers were developed for nonlinear haptic and
teleoperator systems that target coordination of the mas-
ter and slave. The Þrst controller was proven to yield
a semi-global asymptotic result in the presence of para-
metric uncertainty in the master and slave dynamic mod-
els provided the user and environmental input forces are
measurable. The second controller was proven to yield a
global asymptotic result despite unmeasurable user and
environmental input forces provided the dynamic mod-
els of the master and slave are known. A transforma-
tion along with an adjustable target system were uti-
lized that allows the master system�s impedance to be
adjusted so that matches a desired target system operat-
ing in a remote physical/virtual environment. This work
also presented an optional strategy to encode a velocity
Þeld assist mechanism that provides the user of the sys-
tem help in controlling the slave system in completing
a pre-deÞned contour following task. For each controller,
Lyapunov-based techniques were used to prove the control
development implements a stable coordinated teleopera-
tor/haptic system with a user assist mechanism. When
the optional velocity Þeld assist mechanism is disabled,
the analysis proved the control development implements a
stable passively coordinated teleoperator/haptic system.
Simulation results demonstrated proof of concept for both
controllers (see appendices I and J).
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Appendices

A MIF Desired Trajectory Stability Analysis

To prove that ξd(t), λd(t), ηd (t), úηd (t) ∈ L∞, let V (t) ∈
R denote the following function

V , V1 + V2 (68)

where V1(t) ∈ R denotes the following non-negative func-
tion

V1 ,
1

2
ηTdMT ηd +

1

2
λTdKTλd (69)

where λd(t), ηd (t) , MT and KT were introduced in (21).
The expression given in (69) can be lower bounded by the
auxiliary function, V2(x̄) ∈ R, which is deÞned as follows

V2 , 2εηTdMTλd ≤ V1 (70)

where x̄(t) ∈ R2n is deÞned as follows

x̄ , [ λTd ηTd ]T (71)

and ε ∈ R is a positive bounding constant selected ac-
cording to the following inequality

ε <
min {λmin{MT},λmin{KT}}

4λmax{MT } (72)

where λmin{·} and λmax{·} denote the minimum andmax-
imum eigenvalue of a matrix, respectively. From (70) it is
clear that V (t) is a non-negative function and bounded
by the following inequalities

λ̄1 kx̄k2 ≤ V (x̄) ≤ λ̄2 kx̄k2 (73)

where λ̄1, λ̄2 ∈ R are positive bounding constants deÞned
as follows, provided that ε is selected according to (72)

λ̄1 , 1

2
min {λmin{MT },λmin{KT}} (74)

−2ελmax{MT}
λ̄2 , 1

2
max {λmax{MT},λmax{KT}}

+2ελmax{MT}.

To facilitate the subsequent analysis, the time derivative
of (68) can be determined as follows

úV = ηTdMT úηd + λ
T
dKT

úλd (75)

+2ε úηTdMTλd + 2εη
T
dMT

úλd.

After utilizing (21) and the fact that ηd (t) = úλd (t), the
expression in (75) can be written as

úV = ηTd F − ηTdBTηd + 2ελTd F − 2ελTdBTηd
−2ελTdKTλd + 2εηTdMT ηd. (76)

The right-hand side of (76) can be upper bounded as fol-
lows

úV ≤ 1

δ1
kηdk2 + δ1 kFk2 − λmin {BT} kηdk2

+2ε

·
δ2 kλdk2 + 1

δ2
kFk2

¸
(77)

+2ελmax {BT}
·
δ3 kλdk2 + 1

δ3
kηdk2

¸
−2ελmin {KT} kλdk2 + 2ελmax {MT} kηdk2

where the following properties were utilized

ηTd F ≤ 1

δ1
kηdk2 + δ1 kFk2

−ηTdBT ηd ≤ −λmin {BT} kηdk2

λTd F ≤ δ2 kλdk2 + 1

δ2
kFk2

−λTdBT ηd ≤ λmax {BT}
·
δ3 kλdk2 + 1

δ3
kηdk2

¸
−λTdKTλd ≤ −λmin {KT } kλdk2
ηTdMT ηd ≤ λmax {MT } kηdk2

where δ1, δ2, δ3 ∈ R are positive bounding constants.
The expression in (77) can be rearranged as follows

úV ≤ − (λmin {BT }− 1

δ1
− 2ελmax {BT}

δ3
(78)

−2ελmax {MT}) kηdk2
−2ε (λmin {KT }− δ3λmax {BT }− δ2) kλdk2

+

µ
δ1 +

2ε

δ2

¶
kFk2 .

Provided that ε is selected to satisfy (72) and δ1, δ2, δ3,
MT , BT , KT are selected to satisfy the following sufficient
conditions

λmin{BT} >
1

δ1
+
2ελmax {BT}

δ3
(79)

+2ελmax {MT}
λmin{KT} > δ3λmax {BT}+ δ2 (80)

along with the Assumption 1, then the right-hand side of
(78) can be upper bounded as follows

úV ≤ −min {γa, γb}
λ̄2

V + ² (81)

where (71) and (73) were utilized, and γa, γb, ² ∈ R
denote positive bounding constants.
From (68) - (70), and (73), and the fact that F(t) ∈

L∞, the expression in (81) can be used with the result
from [7] to prove that x̄ (t), λd (t), ηd (t) ∈ L∞. By utiliz-
ing the fact that ηd (t) ∈ L∞ along with (20) and Remark
2, it is clear that ξd (t), úξd (t), ϕ

¡
ξp (t)

¢ ∈ L∞. Based on
(21), and the fact that F (t) ∈ L∞ then úηd (t) ∈ L∞.
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After utilizing the above boundedness statements along
with Remark 2 and the Þrst time derivative of (20), it is
clear that ξ̈d (t) ∈ L∞. The time derivative of (21) can be
written as follows

MT η̈d +BT úηd +KTηd = úF (82)

where the fact ηd (t) = úλd (t) was utilized. After utilizing
the fact that ηd (t), úηd (t) ∈ L∞, and the assumption
that úFH (t), úFE (t) ∈ L∞ along with (82), it is clear that
η̈d (t) ∈ L∞. The second time derivative of (20) can be
written as follows

...
ξ d , γ

d2

dt2

³£
ϕT
¡
ξp
¢
0Tr

¤T´
+ η̈d. (83)

After utilizing the above boundedness statements and Re-
mark 2 along with (83), then

...
ξ d (t) ∈ L∞. The time

derivative of (82) can be written as follows

MT
...
η d +BT η̈d +KT úηd = F̈ (84)

After utilizing the fact that úηd (t), η̈d (t) ∈ L∞ and the
assumption that F̈H (t), F̈E (t) ∈ L∞, from (84) it can be
showed that ...η d(t) ∈ L∞. After taking time derivative
of (83) and utilizing the facts that ξd (t), úξd (t) , ξ̈d (t) ,...
ξ d (t) ,

...
η d(t) ∈ L∞, then it is clear that

....
ξ d (t) ∈ L∞.

By utilizing the above boundedness statements along with
(19), it is clear that xd (t), úxd (t), ẍd (t),

...
xd (t), and....

x d (t) ∈ L∞.

B Proof of Theorem 1

Lemma 1 Let the auxiliary functions L1 (t), L2 (t) ∈ R
be deÞned as follows

L1 , rT (Nd − β1sgn (e2)) (85)

L2 , −β2 úeT2 sgn (e2)

where β1 and β2 were introduced in (34). Provided that
β1 is selected to satisfy the following sufficient condition

β1 > ς1 +
1

α1
ς2 (86)

where ς1 and ς2 were introduced in (33), and α1 was in-
troduced in (15), thenR t

t0
L1 (τ) dτ ≤ ξb1

R t
t0
L2 (τ) dτ ≤ ξb2 (87)

where ξb1, ξb2 ∈ R are positive constants deÞned as

ξb1 , β1

2nX
i=1

|e2i (t0)|− eT2 (t0)Nd (t0) (88)

ξb2 , β2

2nX
i=1

|e2i (t0)| .

Proof. After substituting (15) into L1 (t) deÞned in
(85) and then integrating in time, results in the following
expressionZ t

t0

L1 (τ) dτ = α1

Z t

t0

eT2 (τ) [Nd (τ)− β1sgn (e2 (τ))] dτ

+

Z t

t0

deT2 (τ)

dτ
Nd (τ) dτ (89)

−β1
Z t

t0

deT2 (τ)

dτ
sgn (e2 (τ)) dτ .

After integrating the second integral on the right side of
(89) by parts and evaluating the last integral, the follow-
ing expression is obtainedZ t

t0

L1 (τ) dτ = α1

Z t

t0

eT2

µ
Nd − 1

α1

dNd
dτ

(90)

−β1sgn (e2)) dτ + eT2 (t)Nd (t)

−β1
2nX
i=1

|e2i (t)|+ ξb1.

The right-hand side of (90) can be upper bounded as fol-
lowsZ t

t0

L1 (τ) dτ 6 α1

Z t

t0

2nX
i=1

|e2i (τ)| (|Ndi (τ)| (91)

+
1

α1

¯̄̄̄
dNdi (τ)

dτ

¯̄̄̄
− β1

¶
dτ

+
2nX
i=1

|e2i (t)| (|Ndi (t)|− β1) + ξb1.

If β1 is chosen according to (39), then the Þrst inequality
in (87) can be proven from (91). The second inequality
in (87) can be obtained by integrating the expression for
L2(t) deÞned in (85) as followsZ t

t0

L2 (τ) dσ = −β2
Z t

t0

úeT2 (τ) sgn (e2 (τ)) dτ (92)

= ξb2 − β2
2nX
i=1

|e2i (t)| ≤ ξb2.

The following is the proof of Theorem 1.
Proof. Let the auxiliary functions P1 (t), P2 (t) ∈ R

be deÞned as follows

P1 , ξb1 −
Z t

t0

L1 (τ) dτ ≥ 0 (93)

P2 , ξb2 −
Z t

t0

L2 (τ) dτ ≥ 0 (94)

where L1 (t), L2 (t) , ξb1 and ξb2 were deÞned in Lemma
1. The proof of Lemma 1 ensures that P1 (t) and P2 (t)
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are non-negative. Let V (y, t) ∈ R denote the following
non-negative function

V , 1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rT M̄r + P1 + P2 (95)

where y (t) ∈ R6n+2 is deÞned as follows

y ,
£
zT

√
P1

√
P2

¤T
(96)

where z (t) ∈ R6n is deÞned as follows

z ,
£
eT1 eT2 rT

¤T
. (97)

Because M̄ (x) is assumed to be bounded as deÞned in
(14), (95) is bounded as follows

W1(y) ≤ V (y, t) ≤W2(y) (98)

where W1 (y), W2 (y) ∈ R are deÞned as

W1(y) , λ1 ky(t)k2 W2(y) , λ2 ky(t)k2 (99)

where λ1 , 1
2 min {1, m̄1} and λ2 , max

©
1, 12m̄2

ª
.

After differentiating (95) in time, the following expres-
sion can be obtained

úV = −α2eT1 e1 − α1eT2 e2 − rT (ks + 1) r (100)

+eT1 e2 + r
T �N − rTβ2sgn (e2) + β2 úeT2 sgn (e2)

where (15), (16), (36), (93), and (94) were utilized. To
facilitate the subsequent analysis, the following inequality
can be developed from (30) - (32) (see Appendix H)°°° �N (·)°°° ≤ ρ (kzk) kzk (101)

where ρ (·) is a positive, invertible bounding function that
is non-decreasing in kzk. By utilizing (15), (101), and the
triangle inequality, úV (t) can be upper bounded as follows

úV ≤ −α2eT1 e1 − α1eT2 e2 − rT (ks + 1) r (102)

+eT1 e1 + e
T
2 e2 + ρ (kzk) krk kzk

−α1eT2 β2sgn (e2) .
After utilizing (97), the right-hand side of (102) can be
rearranged as follows

úV ≤ −λ3 kzk2 +
h
ρ (kzk) krk kzk− ks krk2

i
−α1β2

2nX
i=1

|e2i| (103)

where λ3, min {α1 − 1, α2 − 1, 1}. Completing the
squares on the bracketed term in (103), yields the fol-
lowing expression

úV ≤ −
µ
λ3 − ρ

2 (kzk)
4ks

¶
kzk2 − α1β2

2nX
i=1

|e2i| . (104)

Provided α1 and α2 are selected to be greater than 2
and ks is selected according to the following sufficient
condition

ks ≥ ρ2 (kzk)
4λ3

or kzk ≤ ρ−1
³
2
p
ksλ3

´
(105)

then based on (104) the following inequality can be de-
veloped

úV ≤W (y)− α1β2
2nX
i=1

|e2i| (106)

whereW (y) ∈ R denotes the following non-positive func-
tion

W (y) , −β0 kzk2 (107)

where β0 ∈ R is a positive constant. From (95)-(99) and
(104)-(107) the regions D and S can be deÞned as follows

D ,
n
y ∈ R6n+2 | kyk < ρ−1

³
2
p
ksλ3

´o
(108)

S ,
½
y ∈ D |W2 (y) < λ1

³
ρ−1

³
2
p
ksλ3

´´2¾
. (109)

Note that the region of attraction in (109) can be made
arbitrarily large to include any initial conditions by in-
creasing the control gain ks (i.e., a semi-global stability
result). SpeciÞcally, (99) and (109) can be used to calcu-
late the region of attraction as follows

W2 (y (t0)) < λ1

³
ρ−1

³
2
p
ksλ3

´´2
(110)

=⇒ ky (t0)k <
r
λ1
λ2
ρ−1

³
2
p
ksλ3

´
,

which can be rearranged as

ks ≥ 1

4λ3
ρ2

Ãr
λ2
λ1
ky (t0)k

!
. (111)

By utilizing (88), (96) and (97) the following explicit ex-
pression for ky (t0)k can be derived as follows

ky (t0)k2 = ke1 (t0)k2 + ke2 (t0)k2 (112)

+ kr (t0)k2 + ξb1 + ξb2.

From (95), (106), (109)-(111), it is clear that V (y, t) ∈
L∞ ∀y (t0) ∈ S; hence e1 (t), e2 (t), r (t), z (t), y (t) ∈ L∞
∀y (t0) ∈ S. From (106), it is easy to show that e2 (t) ∈ L1
∀y (t0) ∈ S. The fact that e2 (t) ∈ L1 ∀y (t0) ∈ S can be
used along with (16) to determine that e1 (t) , úe1 (t) ∈ L1
∀y (t0) ∈ S. From (7), (17) and the fact that xd (t) ∈ L∞,
it is clear that x (t), xm (t), xs (t) ∈ L∞ ∀y (t0) ∈ S.
From (15) and (16) it is also clear that úe2 (t), úe1 (t) ∈ L∞
∀y (t0) ∈ S. Using these boundedness statements, from

11



(35) it is clear that
.
ū (t) ∈ L∞ ∀y (t0) ∈ S. Since

ë1 (t) ∈ L∞, from the second time derivative of (17), and
the fact that ẍd (t) ∈ L∞ along with (27), it is clear that
ū (t) ∈ L∞ ∀y (t0) ∈ S. The previous boundedness state-
ments can be used along with (36), (101), and Remark
4 to prove that úr (t) ∈ L∞ ∀y (t0) ∈ S. These bounding
statements can be used along with the time derivative of
(107) to prove that úW (y (t)) ∈ L∞ ∀y (t0) ∈ S; hence,
W (y (t)) is uniformly continuous. Standard signal chas-
ing arguments can be used to prove that all remaining
signals are bounded. A direct application of Theorem 8.4
in [13] can be used to prove that kz (t)k → 0 as t → ∞
∀y (t0) ∈ S. From (97), it is clear that kr (t)k → 0 as
t→∞ ∀y (t0) ∈ S. Based on the deÞnitions given in (15)
and (16), standard linear analysis tools can be used to
prove that if kr (t)k→ 0 then k úe2 (t)k , ke2 (t)k , k úe1 (t)k,
ke1 (t)k → 0 as t → ∞ ∀y (t0) ∈ S. Based on the deÞ-
nition of x (t) in (7) and e1 (t) in (17), it is clear that if
ke1 (t)k→ 0 then xs (t) → xm (t) and xm (t) → ξd (t) .

C Proof of Theorem 2

Proof. Since the user assist mechanism is disabled (i.e.,
γ = 0), the target system deÞned in (20) and (21) can
be simpliÞed to (25). Let Vp (t) ∈ R denote the following
non-negative function

Vp ,
1

2
úξ
T

dMT
úξd +

1

2
ξTdKT ξd. (113)

After differentiating (113) in time, the following simpliÞed
expression can be obtained

úVp = úξ
T

d F − úξ
T

dBT
úξd (114)

where (25) was utilized. Based on the fact that BT is a
constant positive deÞnite, diagonal matrix, the following
inequality can be obtained

úVp ≤ úξ
T

d F. (115)

Integrating both sides of (115), results in the following
inequality

−c2 ≤ Vp (t)− Vp (t0) ≤
Z t

t0

úξ
T

d (σ)F (σ) dσ (116)

where c2 ∈ R is a positive bounded constant (since
Vp (t) is bounded from the trajectory generation system
in (25)).
By using the transformation in (7), the left-hand side

of (6) can be expressed asZ t

t0

£
úxTm (τ) úxTs (τ)

¤ · FH (τ)
FE (τ)

¸
dτ

=

Z t

t0

úxT F̄ dτ . (117)

By substituting the time derivative of (17) into (117), the
following expression can be obtainedZ t

t0

úxT (τ) F̄ (τ) dτ =

Z t

t0

úξ
T

d (τ)F (τ) dτ (118)

−
Z t

t0

úeT1 (τ) F̄ (τ) dτ

where (13),(19) and (22) were utilized. Based on (116), it

is clear that
R t
t0
úξ
T

d (τ)F (τ) dτ is lower bounded by −c2.
The fact that úe1 (t) ∈ L1 (see the proof for Theorem 1)
and the assumption that F̄ (t) ∈ L∞ can be used to show
that the second integral of (118) is bounded. Hence, these
facts can be applied to (117) and (118) to prove thatZ t

t0

£
úxTm (τ) úxTs (τ)

¤ · FH (τ)
FE (τ)

¸
dτ ≥ −c23 (119)

where c3∈ R is a bounded constant.

D Proof of Theorem 3

Lemma 2 Let the auxiliary functions L1 (t), L2 (t) ∈ R
be deÞned as follows

L1 , −rT
³ .

F̄ +β1sgn (e2)
´

(120)

L2 , −β2 úeT2 sgn (e2)
where β1 and β2 were introduced in (61). Provided that
β1 is selected to satisfy the following sufficient condition

β1 > ς3 + ς4, (121)

where ς3 and ς4 were introduced in (64), thenR t
t0
L1 (τ) dτ ≤ ξb1

R t
t0
L2 (τ) dτ ≤ ξb2 (122)

where ξb1, ξb2 ∈ R are positive constants deÞned as

ξb1 , β1

2nX
i=1

|e2i (t0)|− eT2 (t0)
³
−

.

F̄ (t0)
´

ξb2 , β2

2nX
i=1

|e2i (t0)| . (123)

Proof. After substituting (44) into L1 (t) deÞned in
(120) and then integrating in time, results in the following
expressionZ t

t0

L1 (τ) dτ =

Z t

t0

eT2 (τ)
h
−

.

F̄ (τ) (124)

−β1sgn (e2 (τ))] dτ
+

Z t

t0

deT2 (τ)

dτ

³
−

.

F̄ (τ)
´
dτ

−β1
Z t

t0

deT2 (τ)

dτ
sgn (e2 (τ)) dτ .

12



After integrating the second integral on the right-hand
side of (124) by parts and evaluating the last integral,
the following expression is obtainedZ t

t0

L1 (τ) dτ =

Z t

t0

eT2 (τ)
³
−

.

F̄ (τ)+
..

F̄ (τ)

−β1sgn (e2 (τ))) dτ (125)

−eT2 (t)
.

F̄ (t)− β1
2nX
i=1

|e2i (t)|+ ξb1.

The right-hand side of (125) can be upper bounded as
followsZ t

t0

L1 (τ) dτ 6
Z t

t0

2nX
i=1

|e2i (τ)|
³¯̄̄ .
F̄ i (τ)

¯̄̄
(126)

+
¯̄̄ ..
F̄ i (τ)

¯̄̄
− β1

´
dτ

+
2nX
i=1

|e2i (t)|
³¯̄̄ .
F̄ i (t)

¯̄̄
− β1

´
+ ξb1.

If β1 is chosen to satisfy (121), then the Þrst inequality
in (122) can be proven from (126). The second inequality
in (122) can be obtained by integrating L2(t), deÞned in
(120) as followsZ t

t0

L2 (τ) dσ = −β2
Z t

t0

úeT2 (τ) sgn (e2 (τ)) dτ

= ξb2 − β2
2nX
i=1

|e2i (t)| ≤ ξb2. (127)

The following is the proof of Theorem 3.
Proof. Let the auxiliary functions P1 (t), P2 (t) ∈ R

be deÞned as follows

P1 , ξb1 −
Z t

t0

L1 (τ) dτ ≥ 0 (128)

P2 , ξb2 −
Z t

t0

L2 (τ) dτ ≥ 0 (129)

where L1 (t), L2 (t) , ξb1 and ξb2 were deÞned in Lemma
2. The proof of Lemma 2 ensures that P1 (t) and P2 (t)
are non-negative. Let V1 (y, t) ∈ R denote the following
non-negative function

V1 ,
1

2
eT2 e2 +

1

2
rT r + P1 + P2 (130)

where y (t) ∈ R4n+2 is deÞned as

y ,
£
eT2 rT

√
P1

√
P2

¤T
. (131)

Note that (130) is bounded by the following inequalities

W3 (y) ≤ V1 (y, t) ≤W4 (y) (132)

where W3 (y), W4 (y) ∈ R are deÞned as

W3 (y) = λ4 ky (t)k2 W4 (y) = λ5 ky (t)k2 (133)

where λ4, λ5 ∈ R are positive bounding constants.
After differentiating (130) in time, results in the fol-

lowing expression

úV1 = −eT2 e2 − ksrT r − β2eT2 sgn (e2) (134)

where (44), (63), (128), and (129) were utilized. The
expression in (134) can be rewritten as

úV1 = − ke2k2 − ks krk2 − β2
2nX
i=1

|e2i| . (135)

From (130) and (135), it is clear that V1 (y, t) ∈ L∞;
hence, e2 (t) ∈ L∞ ∩L2 ∩L1, r (t) ∈ L∞ ∩L2, and y (t) ∈
L∞ . Since e2 (t), r (t) ∈ L∞, then (44) and (62) can
be used to prove that úe2 (t),

.

�F (t) ∈ L∞. Given that
e2 (t) , r(t),

.

�F (t) ∈ L∞ and the assumption that
.

F̄ (t) ∈
L∞, (60) can be used to prove that úr(t) ∈ L∞. Barbalat�s
Lemma can be utilized to prove

ke2(t)k , kr(t)k→ 0 as t→∞. (136)

From (44), (45), (136) and the fact that M̄(x) ∈ L∞,
standard linear analysis arguments can be used to prove
that e1(t), úe1 (t), úe2(t) ∈ L∞ and e1(t), úe1(t) ∈ L1, and
that

ke1(t)k , k úe1(t)k , k úe2(t)k→ 0 as t→∞. (137)

By using the assumption that F̄ (t) ∈ L∞ and the fact
that úe2 (t) ∈ L∞ from (58) it is clear that �F (t) ∈ L∞.
Since �F (t) ∈ L∞, (49) and the proof in Appendix F can
be used to prove that λd (t), ηd (t) , úηd (t) , ξd (t) , úξd (t) ,
ξ̈d (t) ∈ L∞. Using these facts along with (42), (46) and
their Þrst time derivatives, it is clear that x (t), úx (t),
xm (t), úxm(t), xs (t) , úxs(t) ∈ L∞. Since e1 (t) , úe1 (t) ,
M̄ (x) ,

.

M̄ (x) ∈ L∞, it is clear from (57) that T̄1 (t) ∈
L∞, and using previously stated bounding properties,
T̄ (t) ∈ L∞. It is also possible to state that T̄1 (t) ∈ L1,
where (57) was utilized. Based on the deÞnition of x (t)
in (42) and the previously stated bounding properties, it
is clear that xs (t) → xm (t) and xm (t) → ξ1 (t) . From
these bounding statements and standard signal chasing
arguments, all signals can be shown to be bounded.

E Proof of Theorem 4

Proof. Since the user assist mechanism is disabled (i.e.,
γ = 0), the target system deÞned in (48) and (49) can be
simpliÞed to (52). To assist in the subsequent analysis,
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the following expression can be developed from integra-
tion by partsZ t

t0

M̄ë1 (τ) dτ = M̄ úe1(t)− M̄ úe1 (t0) (138)

−
Z t

t0

.

M̄ úe1 (τ) dτ .

Since M̄ (x) ,
.

M̄ (x) , úe1(t) ∈ L∞, and úe1(t) ∈ L1, thenR t
t0
M̄ë1 (τ) dτ ∈ L∞. After integrating (55) as followsZ t

t0

�F (τ) dτ = −
Z t

t0

M̄ë1 (τ) dτ −
Z t

t0

T̄1 (τ) dτ (139)

and using the facts that T̄1(t) ∈ L1 (see proof of Theorem
3) and that

R t
t0
M̄ë1 (τ) dτ ∈ L∞, it is clear that �F (t) ∈

L1, where �F (t) ∈ R2n is deÞned as follows
�F , F̄ − �F. (140)

The expression in (140) can be decomposed as �F (t) =£
�FT1 �FT2

¤T
, where �F1 (t) , �F2 (t) ∈ Rn. After utilizing

the fact that �F (t0) = 02n, the following can be derived

�F (t) =

Z t

t0

.

�F (τ) dτ . (141)

From the proof of Theorem 3 (see Appendix D), it is clear

that �F (t) ∈ L∞, then from (141) it is also clear that
.

�F
(t) ∈ L1.
By using the transformation in (42), the passivity ob-

jective in (6) can be rewritten as followsZ t

t0

£
úxTm (τ) úxTs (τ)

¤ · FH (τ)
FE (τ)

¸
dτ (142)

=

Z t

t0

úxT F̄ dτ −
Z t

t0

h
0Tn

úξ
T

2

i
F̄ dτ .

By utilizing (140) and the time derivative of (46), (142)
can be rewritten as followsZ t

t0

úxT F̄ dτ −
Z t

t0

h
0Tn

úξ
T

2

i
F̄ dτ (143)

=

Z t

t0

úξ
T

1 (τ) �F1 (τ) dτ +

Z t

t0

úξ
T

1 (τ) �F1 (τ) dτ

−
Z t

t0

úeT1 (τ) F̄ (τ) dτ .

Following expression can be developed from integration
by parts of the second integral at the right-hand side of
(143) Z t

t0

úxT F̄ dτ −
Z t

t0

h
0Tn

úξ
T

2

i
F̄ dτ (144)

=

Z t

t0

úξ
T

1 (τ)
�F1 (τ) dτ −

Z t

t0

ξT1 (τ)
.

�F1 (τ) dτ

+ξT1 (t) �F1 (t)−
Z t

t0

úeT1 (τ) F̄ (τ) dτ

where �F (t0) = 02n is both utilized. Since úξ1(t) ∈ L∞ and
�F (t) ∈ L1, it is clear that the Þrst integral expression in
(144) is bounded and a lower negative bound exists. Since

ξ1(t)∈ L∞ and
.

�F (t) ∈ L1 it is clear that the second in-
tegral expression in (144) is bounded and a lower nega-
tive bound exists, and since ξ1 (t), �F (t) ∈ L∞ then third
expression is also bounded and a lower negative bound
exists. Finally, because úe1(t) ∈ L1 and F̄ (t) ∈ L∞, it
is possible to show that the last integral in (144) is also
bounded and a lower negative bound exists. Hence, these
facts can be applied to (142) to prove thatZ t

t0

£
úxTm (τ) úxTs (τ)

¤ · FH (τ)
FE (τ)

¸
dτ ≥ −c24 (145)

where c4∈ R is a bounded constant.

F UMIF Desired Trajectory Stability Analysis

In the proof of Theorem 3 (see Appendix D), it is proven

that e1 (t) , e2(t), r(t), �F (t),
.

�F (t) ∈ L∞ as well as that
ke1(t)k , ke2 (t)k, and kr(t)k → 0 as t → ∞ regardless
of whether or not x (t) , ξd (t) , λd(t), ηd (t), úηd (t) ∈ L∞.
Therefore the fact that �F (t) ∈ L∞ can be used in the
subsequent analysis. To prove that λd(t), ηd (t) ∈ L∞, let
V (t) ∈ R denote the following function

V , V1 + V2 (146)

where V1(t) ∈ R denotes the following non-negative func-
tion

V1 ,
1

2
ηTdMTηd +

1

2
λTdKTλd (147)

where λd(t), ηd (t) , MT and KT were introduced in (49).
The expression given in (147) can be lower bounded by
the auxiliary function, V2 (x̄) ∈ R, deÞned as follows

V2 , 2εηTdMTλd ≤ V1 (148)

where x̄(t) ∈ R4n is deÞned as

x̄ , [ λTd ηTd ]T (149)

and ε ∈ R is a positive bounding constant selected ac-
cording to the following inequality

ε <
min {λmin{MT },λmin{KT}}

4λmax{MT} (150)

where λmin{·} and λmax{·} denote the minimum and max-
imum eigenvalue of a matrix, respectively. From (148) it
is clear that V (t) is a non-negative function and bounded
by the following inequalities

λ̄1 kx̄k2 ≤ V (x̄) ≤ λ̄2 kx̄k2 (151)
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where λ̄1, λ̄2 ∈ R are positive constants deÞned as follows,
provided that ε is selected according to (150)

λ̄1 , 1

2
min {λmin{MT },λmin{KT}} (152)

−2ελmax{MT}
λ̄2 , 1

2
max {λmax{MT},λmax{KT}}

+2ελmax{MT}.
To facilitate the subsequent analysis, the time derivative
of (146) can be determined as follows

úV = ηTdMT úηd + λ
T
dKT

úλd (153)

+2ε úηTdMTλd + 2εη
T
dMT

úλd.

After utilizing (49) and the fact that ηd (t) = úλd (t), the
expression in (153) can be written as

úV = ηTd
¡
MT M̄

−1¢ �F − ηTdBTηd + 2ελTdMT M̄
−1 �F

−2ελTdBTηd − 2ελTdKTλd + 2εη
T
dMTηd. (154)

The right-hand side of (154) can be upper bounded as
follows

úV ≤ ξm̄λmax {MT }
·
δ1 kηdk2 +

1

δ1

°°° �F°°°2¸ (155)

−λmin {BT} kηdk2

+2εξm̄λmax {MT}
·
δ3 kλdk2 + 1

δ3

°°° �F°°°2¸
+2ελmax {BT }

·
δ2 kλdk2 + 1

δ2
kηdk2

¸
−2ελmin {KT } kλdk2 + 2ελmax {MT} kηdk2

where the following properties were utilized

ηTdMT M̄
−1 �F ≤ ξm̄λmax {MT}

h
δ1 kηdk2 (156)

+
1

δ1

°°° �F°°°2¸
−ηTdBTηd ≤ −λmin {BT} kηdk2 (157)

2ελTdMT M̄
−1 �F ≤ 2εξm̄λmax {MT} (158)·

δ3 kλdk2 + 1

δ3

°°° �F°°°2¸
−2ελTdBTηd ≤ 2ελmax {BT }

h
δ2 kλdk2 (159)

+
1

δ2
kηdk2

¸
−2ελTdKTλd ≤ −2ελmin {KT} kλdk2 (160)

2εηTdMTηd ≤ 2ελmax {MT} kηdk2 (161)

where δ1, δ2, δ3 ∈ R denote positive bounding constants
and ξm̄∈ R denotes positive bounding constant deÞned
as °°M̄−1°°

∞ ≤ ξm̄ (162)

where
°°M̄−1°°

∞ denotes the induced inÞnity norm of the
bounded matrix M̄−1 (x) .
The expression in (155) can be rearranged as follows

úV ≤ − (λmin {BT}− ξm̄δ1λmax {MT} (163)

−2ελmax {BT }
δ2

− 2ελmax {MT}
¶
kηdk2

−2ε (λmin {KT}− δ2λmax {BT}
−ξm̄δ3λmax {MT }) kλdk2

+ξm̄λmax {MT}
µ
1

δ1
+
2ε

δ3

¶°°° �F°°°2 .
Provided δ1, δ2, δ3, MT , BT , KT and ε are selected to
satisfy (150) and the following sufficient conditions

λmin{BT} > ξm̄δ1λmax {MT}
+
2ελmax {BT }

δ2
+ 2ελmax {MT}

λmin{KT} > ξm̄δ3λmax {MT}+ δ2λmax {BT}

right-hand side of (163) can be upper bounded as follows

úV ≤ −min {γa, γb}
λ̄2

V + ² (164)

where (149) and (151) were utilized, and γa, γb, ² ∈ R
denote positive bounding constants.

From (146) - (148), and (151), and that �F (t) ∈ L∞
(see Appendix D), the expression in (164) can be used
with the result from [7] to prove that x̄ (t), λd (t), ηd (t) ∈
L∞. Based on (49), and the fact that M̄−1 (x), �F (t) ∈
L∞ then úηd (t) ∈ L∞. After utilizing the fact that ηd (t) ,
úηd (t) ∈ L∞ along with the Remark 2, then it is clear that
ξd (t), úξd (t) , ξ̈d (t) ∈ L∞.

G Existence of the Inverse of M̄M−1
T

To show that
¡
M̄M−1

T

¢−1
term introduced at the right-

hand side of (49) exists, from (10) and the fact thatMT is
a positive deÞnite, diagonal matrix, then it is clear that

M̄M−1
T = S−T

·
M1 0nxn
0nxn M2

¸
S−1M−1

T (165)

where S, M1 (·) andM2 (·) were introduced in (8), (1) and
(2), respectively. From (165), it is clear that,

¡
M̄M−1

T

¢−1
=MTS

·
M−1
1 0nxn

0nxn M−1
2

¸
ST . (166)
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H Upper Bound Development for MIF Analy-

sis

To simplify the following derivations, (31) can be rewrit-
ten as follows

N , N (x, úx, ẍ, e1, e2, r,
...
x d) (167)

= M̄
...
x d+

.

M̄ ẍ+
.

N̄ +e2

+M̄ (α1 + α2) r − M̄
¡
α21 + α1α2 + α

2
2

¢
e2

+M̄α32e1 +
1

2

.

M̄ r

where (15) and (16) were both utilized. To facili-
tate the subsequent analysis, N (x, úxd, ẍd, 0, 0, 0,

...
xd),

N (x, úx, ẍd, 0, 0, 0,
...
xd), N (x, úx, ẍ, 0, 0, 0,

...
xd),

N (x, úx, ẍ, e1, 0, 0,
...
x d) , and N (x, úx, ẍ, e1, e2, 0,

...
xd)

are added and subtracted to the right-hand side of (30)
as follows

�N (168)

= [N (x, úxd, ẍd, 0, 0, 0,
...
xd)−Nd (xd, úxd, ẍd, 0, 0, 0, ...xd)]

+ [N (x, úx, ẍd, 0, 0, 0,
...
xd)−N (x, úxd, ẍd, 0, 0, 0, ...xd)]

+ [N (x, úx, ẍ, 0, 0, 0,
...
xd)−N (x, úx, ẍd, 0, 0, 0, ...xd)]

+ [N (x, úx, ẍ, e1, 0, 0,
...
x d)−N (x, úx, ẍ, 0, 0, 0, ...x d)]

+ [N (x, úx, ẍ, e1, e2, 0,
...
xd)−N (x, úx, ẍ, e1, 0, 0, ...xd)]

+ [N (x, úx, ẍ, e1, e2, r,
...
xd)−N (x, úx, ẍ, e1, e2, 0, ...xd)] .

After applying the Mean Value Theorem to each brack-
eted term of (168), the following expression can be ob-
tained

�N = (169)
∂N (σ1, úxd, ẍd, 0, 0, 0,

...
x d)

∂σ1

¯̄̄̄
σ1=v1

(x− xd)

+
∂N (x,σ2, ẍd, 0, 0, 0,

...
xd)

∂σ2

¯̄̄̄
σ2=v2

( úx− úxd)

+
∂N (x, úx,σ3, 0, 0, 0,

...
x d)

∂σ3

¯̄̄̄
σ3=v3

(ẍ− ẍd)

+
∂N (x, úx, ẍ,σ4, 0, 0,

...
xd)

∂σ4

¯̄̄̄
σ4=v4

(e1 − 0)

+
∂N (x, úx, ẍ, e1,σ5, 0,

...
xd)

∂σ5

¯̄̄̄
σ5=v5

(e2 − 0)

+
∂N (x, úx, ẍ, e1, e2,σ6,

...
xd)

∂σ6

¯̄̄̄
σ6=v6

(r − 0)

where v1 ∈ (xd, x), v2 ∈ ( úxd, úx), v3 ∈ (ẍd, ẍ), v4 ∈ (0, e1),
v5 ∈ (0, e2), and v6 ∈ (0, r). The right-hand side of (169)

can be upper bounded as follows°°° �N°°° ≤ (170)°°°°° ∂N (σ1, úxd, ẍd, 0, 0, 0,
...
xd)

∂σ1

¯̄̄̄
σ1=v1

°°°°° ke1k
+

°°°°° ∂N (x,σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2

¯̄̄̄
σ2=v2

°°°°° k úe1k
+

°°°°° ∂N (x, úx,σ3, 0, 0, 0,
...
xd)

∂σ3

¯̄̄̄
σ3=v3

°°°°° kë1k
+

°°°°° ∂N (x, úx, ẍ,σ4, 0, 0,
...
xd)

∂σ4

¯̄̄̄
σ4=v4

°°°°° ke1k
+

°°°°° ∂N (x, úx, ẍ, e1,σ5, 0,
...
xd)

∂σ5

¯̄̄̄
σ5=v5

°°°°° ke2k
+

°°°°° ∂N (x, úx, ẍ, e1, e2,σ6,
...
x d)

∂σ6

¯̄̄̄
σ6=v6

°°°°° krk .
The partial derivatives in (169) can be calculated by using
(167) as follows

∂N (σ1, úxd, ẍd, 0, 0, 0,
...
xd)

∂σ1
=

∂M̄ (σ1)

∂σ1

...
xd (171)

+
∂

.

M̄ (σ1, úxd)

∂σ1
ẍd

+
∂

.

N̄ (σ1, úxd, ẍd)

∂σ1

∂N (x,σ2, ẍd, 0, 0, 0,
...
xd)

∂σ2
=

∂
.

M̄ (x,σ2)

∂σ2
ẍd (172)

+
∂

.

N̄ (x,σ2, ẍd)

∂σ2
∂N (x, úx,σ3, 0, 0, 0,

...
xd)

∂σ3
=

.

M̄ (x, úx) (173)

+
∂

.

N̄ (x, úx,σ3)

∂σ3
∂N (x, úx, ẍ,σ4, 0, 0,

...
xd)

∂σ4
= α32M̄ (x) (174)

∂N (x, úx, ẍ, e1,σ5, 0,
...
xd)

∂σ5
= I2n (175)

− ¡α21 + α1α2 + α22¢ M̄ (x)

∂N (x, úx, ẍ, e1, e2,σ6,
...
xd)

∂σ6
= (α1 + α2) M̄ (x) (176)

+
1

2

.

M̄ (x, úx)

where I2n ∈ R2n×2n denotes the identity matrix. By
deÞning

v1 , x− τ1 (x− xd) v2 , úx− τ2 ( úx− úxd)

v3 , ẍ− τ3 (ẍ− ẍd) v4 , e1 − τ4 (e1 − 0)
v5 , e2 − τ5 (e2 − 0) v6 , r − τ6 (r − 0)
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where τ i ∈ (0, 1) ∀i = 1, 2, ..., 6, and if the assumptions
stated for the system model and the desired trajectory
are met, then upper bounds for the right-hand sides of
(171)-(176) can be rewritten as follows°°°°° ∂N (σ1, úxd, ẍd, 0, 0, 0,

...
x d)

∂σ1

¯̄̄̄
σ1=v1

°°°°° 6 ρ1 (x, úx, ẍ) (177)

°°°°° ∂N (x,σ2, ẍd, 0, 0, 0,
...
xd)

∂σ2

¯̄̄̄
σ2=v2

°°°°° 6 ρ2 (x, úx, ẍ) (178)

°°°°° ∂N (x, úx,σ3, 0, 0, 0,
...
xd)

∂σ3

¯̄̄̄
σ3=v3

°°°°° 6 ρ3 (x, úx) (179)

°°°°° ∂N (x, úx, ẍ,σ4, 0, 0,
...
xd)

∂σ4

¯̄̄̄
σ4=v4

°°°°° 6 ρ4 (x) (180)

°°°°° ∂N (x, úx, ẍ, e1,σ5, 0,
...
x d)

∂σ5

¯̄̄̄
σ5=v5

°°°°° 6 ρ5 (x) (181)

°°°°° ∂N (x, úx, ẍ, e1, e2,σ6,
...
xd)

∂σ6

¯̄̄̄
σ6=v6

°°°°° 6 ρ6 (x, úx) (182)

where ρi (·) ∀i = 1, 2, ..., 6, are positive nondecreasing
functions of x (t), úx (t) , and ẍ (t). After substituting
(177)-(182) into (170), �N (·) can be rewritten as

�N ≤ [ρ1 (ke1k , ke2k , krk) + ρ4 (ke1k)] ke1k (183)
+ρ2 (ke1k , ke2k , krk) k úe1k
+ρ3 (ke1k , ke2k) kë1k
+ρ5 (ke1k) ke2k
+ρ6 (ke1k , ke2k) krk

where (15) and (16) were utilized. The expressions in
(15), (16) and (97) can be used to rewrite the upper bound
for the right-hand side of (183) as in (101).

I MIF Controller Simulation Results

A numerical simulation was performed to demonstrate
the performance of the MIF controller given in (26) and
(34). A 2-link, revolute robot dynamic model was utilized
for both the master and slave systems [34] where Mi (·)
and Ni (·) are deÞned as follows

Mi =

·
3.12 + 2 sin (qi2) 0.75 + sin (qi2)
0.75 + sin (qi2) 0.75

¸
(184)

Ni =

·
sin (qi2) úqi2 sin (qi2) ( úqi1 + úqi2)
− sin (qi2) úqi1 0

¸ ·
úqi1
úqi2

¸

where i = 1 denotes the master system and i = 2 denotes
the slave system. By utilizing the forward kinematics [34],
the task-space dynamic model is used in the simulation.
The task-space user and environmental input forces were
set equal to the following time-varying signals

FH =

· − sin(t)
− cos(t)

¸
FE =

· −0.18 úxs1 − 0.3xs1
−0.18 úxs2 − 0.3xs2

¸
.

(185)

The target system, described by (20) and (21), is deÞned
as follows

úξp = γϕ
¡
ξp
¢
+ ηd (186)

MT

·
úηdx
úηdy

¸
= FH + FE (187)

where MT = I2 where I2 ∈ R2×2 denotes the identity
matrix and the terms BT , and KT are selected to be zero.
The following planar task-space velocity Þeld was utilized
[2]

ϕ
¡
ξp
¢
, −2K ¡ξp¢ f ¡ξp¢ ξp + 2c ¡ξp¢ · −ξpyξpx

¸
(188)

where ξp =
£
ξpx ξpy

¤T
is the desired end-effector po-

sition, and f (·) , K (·) , c (·) ∈ R are deÞned as follows

f
¡
ξp
¢
, ξ2px + ξ

2
py − r2o (189)

K
¡
ξp
¢
, ko

Ãq
f2
¡
ξp
¢ °°°°°∂f

¡
ξp
¢

∂ξp

°°°°°+ ²
!−1

c
¡
ξp
¢
,

co exp
³
−µ
q
f2
¡
ξp
¢´°°°°∂f(ξp)∂ξp

°°°° .

In (189), ro = 1 [m] denotes the circle radius, ko = 3£
ms−1

¤
, ² = 0.005

£
m3
¤
, co = 0.25

£
ms−1

¤
, and µ = 20£

m−1
¤
were selected for the simulation. For the sim-

ulation, the user assist mechanism is enabled, hence,
γ = 1. The controller gains are selected as ks = 100,
β1 + β2 = 100, and α1 = α2 = 2.
In Figure 1, the desired end-effector position ξp (t) is

presented when the user assist mechanism is disabled (i.e.,
γ = 0) where the environmental force vector FE (t) is as-
sumed to be zero. From Figure 1, it is clear that the user
can create a circular desired trajectory. For the remain-
ing simulation runs, environmental force vector FE (t) is
set to be a spring-like input force vector, as deÞned in
(185). The desired end-effector position ξp (t) , when the
user assist mechanism is disabled (i.e., γ = 0) and when
the user assist mechanism is enabled (i.e., γ = 1) are pre-
sented Figure 2. From Figure 2, it is clear that the user
can not create a circular desired trajectory in the presence
of the environmental input force. When the user assist

17



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

[m
]

[m]

Starting
Point

End
Point

Figure 1: The desired end-effector position ξp (t) when
the user assist mechanism is disabled (i.e., γ = 0) and
the environmental input force FE (t) is assumed to be
zero
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Figure 2: Desired End-Effector Position ξp (t)

mechanism is enabled (i.e., γ = 1), then the user can cre-
ate a circular desired trajectory even in the presence of
environmental force. The end-effector positions for the
master and the slave systems are given in Figures 3 and
4, respectively. The master system tracking error e11 (t)
and coordination error e12 (t) are presented in Figures 5
and 6, respectively. From Figures 5 and 6, it is clear that
tracking and coordination control objectives deÞned in
(4) and (5), are met. The control inputs for the master
system T1 (t) and the slave system T2 (t) are provided in
Figures 7 and 8, respectively.

J UMIF Controller Simulation Results

A numerical simulation was performed for the UMIF con-
troller given in (54) and (57). The 2-link, revolute ro-
bot dynamic model introduced in (184) was utilized for
both the master and slave systems. By utilizing the ex-
act model knowledge of the simulated system, F̄ (t) in-
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Figure 3: Master System End-Effector Position xm (t)
when the user assist mechanism is enabled (i.e., γ = 1)
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Figure 4: Slave System End-Effector Position xs (t) when
the user assist mechanism is enabled (i.e., γ = 1)
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Figure 5: Master System Tracking Error e11 (t) when the
user assist mechanism is enabled (i.e., γ = 1)
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Figure 6: Coordination Error e12 (t) when the user assist
mechanism is enabled (i.e., γ = 1)

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

[N
m

]

Link 1

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

[N
m

]

Time [sec]

Link 2

Figure 7: Control Input for Master System T1 (t) when
the user assist mechanism is enabled (i.e., γ = 1)
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Figure 8: Control Input for Slave System T2 (t) when the
user assist mechanism is enabled (i.e., γ = 1)
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Figure 9: Desired End-Effector Position ξd1p (t)

troduced in (13) is deÞned as follows

F̄ = M̄M−1
T

·
FH + FE
−FE

¸
(190)

where FH (t) and FE (t) were deÞned in (185). The pla-
nar task-space velocity Þeld deÞned in (188) was utilized
with the same parameters. The constants for the target
system, described by (49), are set to MT = I4, where
I4 ∈ R4×4 denotes the identity matrix and the terms BT
and KT are selected to be zero. The controller gains are
selected as ks = 100, β1 + β2 = 100, and α = 1.
The desired end-effector position ξ1p (t) , when the user

assist mechanism is disabled (i.e., γ = 0) and when the
user assist mechanism is enabled (i.e., γ = 1) are pre-
sented Figure 9. From Figure 9, it is clear that the
proposed user assist mechanism provides a major im-
provement to the desired end-effector position. The end-
effector positions for the master and the slave systems
are given in Figures 10 and 11, respectively. The master
system tracking error e11 (t) and the coordination error
e12 (t) are presented in Figures 12 and 13, respectively.
From Figures 12 and 13, it is clear that tracking and co-
ordination control objectives deÞned in (40) and (41), are
met. The control inputs for the master system T1 (t) and
the slave system T2 (t) are provided in Figures 14 and 15,
respectively. The output of the nonlinear force observer
�F (t) is presented in Figure 16.

19



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

[m
]

[m]

Initial Position

Final Position

Figure 10: Master System End-Effector Position xm (t)
when the user assist mechanism is enabled (i.e., γ = 1)
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Figure 11: Slave System End-Effector Position xs (t)
when the user assist mechanism is enabled (i.e., γ = 1)
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Figure 12: Master System Tracking Error e11 (t) when
the user assist mechanism is enabled (i.e., γ = 1)
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Figure 13: Coordination Error e12 (t) when the user assist
mechanism is enabled (i.e., γ = 1)
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Figure 14: Torque Input for Master System T1 (t) when
the user assist mechanism is enabled (i.e., γ = 1)
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Figure 15: Torque Input for Slave System T2 (t) when the
user assist mechanism is enabled (i.e., γ = 1)
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Figure 16: The Output of the Nonlinear Force Observer
�F (t) when the user assist mechanism is enabled (i.e., γ =
1)
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